TRITERPENE GLYCOSIDES OF Fatsia japonica. V. STRUCTURE OF GLYCOSIDES FROM FLOWER BUDS

E. A. Sobolev, ¹* V. I. Grishkovets, ¹ V. V. Kachala, ² A. S. Shashkov, ² and V. Ya. Chirva ¹

UDC 547.918:543.422

In continuation of investigation of the glycoside composition of *Fatsia japonica* Decne. et Planck (Araliaceae Juss.), we studied the glycosides of flower buds of this plant. It is noteworthy that the glycoside composition of the flower buds was previously studied by Japanese researchers [1, 2], who isolated and established the structure of six triterpene glycosides. However, our preliminary TLC analysis showed the presence of a large number of glycosides in these organs. Furthermore, our previous work on the leaves and fruit pericarp of *F. japonica* [3, 4] indicate that a more detailed study of the structure (bond types) of the isolated glycosides is advisable.

Glycosides were isolated from ground raw material (15 g) after defatting with benzene (3×150 mL) and three extractions (200 mL each) by isopropanol (80%). This afforded total extracted substances (9 g) that were dissolved in water-saturated butanol (400 mL) and washed twice (100 mL each) with cold aqueous ammonia (2.5%) to remove phenolic compounds, salts, and free sugars. Evaporation of the butanol layer gave purified total triterpene glycosides (3.7 g).

Glycosides were separated by chromatography over a silica-gel column with gradient elution by water-saturated $CHCl_3$ —isopropanol (10:1 $^{-1}$:1) to give fractions A (30 mg), B (10 mg), C (60 mg), glycosides D (45 mg), E (450 mg), F (400 mg), G (610 mg), fractions H (723 mg), I (145 mg), glycoside J (158 mg), fractions K (500 mg), L (60 mg), M (50 mg), and N (100).

Fraction C was additionally separated by rechromatography over silica gel with elution by water-saturated $CHCl_3$ —isopropanol (5:1) into glycosides C_1 (9 mg) and C_2 (45 mg).

Fractions G and H were separated analogously with elution by water-saturated CHCl₃—isopropanol $(3:1 \rightarrow 2:1)$ into pure glycosides G_1 (220 mg), G_2 (200 mg), G_3 (80 mg), H_1 (50 mg), and H_2 (600 mg).

Glycosides B (1), C_1 (2), and C_2 (3) were identical by TLC and acid hydrolysis with known samples of 3-O- α -L-arabinopyranosides of oleanolic and echinocystic acids and hederagenin. Their compositions were also confirmed by results from acid hydrolysis and the 13 C NMR, which were identical to those previously described [5]. These arabinosides were isolated in buds of *F. japonica* [1, 2]. However, we did not observe the 3-O- α -L-arabinopyranoside of 16-epi-echinocystic acid among the isolated monosides [2]. No additional signals of an isomeric aglycone were observed in the 13 C NMR spectrum.

Glycosides D (4) and E (5) were identified by TLC as 3-O- β -D-glucopyranosyl-(1-2)-O- α -L-arabinopyranosides of oleanolic acid and hederagenin, which we isolated from leaves of *F. japonica* [3]. Structures of these glycosides were confirmed by acid hydrolysis and ¹³C NMR spectra, which were identical to those previously reported [3], where the 1-2 bond between monosaccharides was unambiguously proven. Therefore, the previously proposed [1, 2] 1-4 bond in glucosylarabinosides of oleanolic acid and hederagenin should be considered erroneous because we did not find other biosides in *F. japonica* buds.

Glycosides G_2 (6), H_1 (7), and H_2 (8) were identical by TLC to 3-O- α -L-arabinopyranosyl-28-O- α -L-rhamnopyranosyl-(1-4)-O- β -D-glucopyranosyl-(1-6)-O- β -D-glucopyranosyl esters of oleanolic and echinocystic acids and hederagenin [5, 6]. The compositions of these glycosides were confirmed by total acid hydrolysis and alkaline hydrolysis to give the progenins, which are identical to those described above for glycosides 1-3.

¹⁾ V. I. Vernadskii Tavricheskii National University, 95007, Simferopol', ul. Yaltinskaya, 4, *e-mail: sobolevevg@mail.ru; 2) N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117913, Moscow, B-334, Leninskii pr., 47. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 248-249, May-June, 2001. Original article submitted June 20, 2001.

-		4	•
	-		u

	R_1	R_2	R_3	R_4
1:	Ara <i>p</i> α→	CH_3	Н	Н
2:	Ara <i>p</i> α→	CH_3	OH	Н
3:	Arapα→	CH ₂ OH	Н	Н
4:	$Glcp\beta$ - $(1-2)$ - $Arap\alpha$ -	CH_3	H	Н
5:	$\mathrm{Glc} p\beta$ -(1 - 2)-Ara $p\alpha$ -	$\mathrm{CH_{2}OH}$	Н	Н
6:	Ara <i>pα</i> →	CH_3	Н	$-\beta$ Glc p -(6-1)- β Glc p -(4-1)- α Rha p
7:	Arapα→	CH_3	OH	$-\beta \operatorname{Glcp}$ -(6-1)- $\beta \operatorname{Glcp}$ -(4-1)- $\alpha \operatorname{Rhap}$
8:	Ara <i>p</i> α→	CH ₂ OH	Н	$-\beta \operatorname{Glcp}$ -(6-1)- $\beta \operatorname{Glcp}$ -(4-1)- $\alpha \operatorname{Rhap}$
9:	$Glcp\beta$ - $(1\rightarrow 2)$ - $Arap\alpha$ -	CH_3	Н	$-\beta$ Glc p -(6-1)- β Glc p -(4-1)- α Rha p
10:	$Glcp\beta$ -(1-2)-Arap α -	CH ₂ OH	Н	$-\beta \operatorname{Glcp}$ -(6-1)- $\beta \operatorname{Glcp}$ -(4-1)- $\alpha \operatorname{Rhap}$

Glycosides J (9) and K (10) were identical by TLC and 13 C NMR to 3-O- β -D-glucopyranosyl-(1-2)-O- α -L-arabinopyranosyl-28-O- α -L-rhamnopyranosyl-(1-4)-O- β -D-glucopyranosyl-(1-6)-O- β -D-glucopyranosyl esters of oleanolic acid and hederagenin, which we isolated previously from leaves of *F. japonica* [3]. Alkaline hydrolysis of **9** and **10** gave **4** and **5**, which were described above.

It is noteworthy that the glycoside composition of *F. japonica* buds is similar to that of the leaves [3] and fruit pericarp [4].

REFERENCES

- 1. T. Aoki, Y. Tanio, and T. Suga, *Phytochemistry*, **15**, 781 (1976).
- 2. T. Aoki and T. Suga, *Phytochemistry*, **17**, 771 (1978).
- 3. V. I. Grishkovets, E. A. Sobolev, A. S. Shashkov, and V. Ya. Chirva, Khim. Prir. Soedin., 395 (2000).
- 4. E. A. Sobolev, V. I. Grishkovets, A. S. Shashkov, N. V. Tolkacheva, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 426 (2000).
- 5. V. I. Grishkovets, D. Yu. Sidorov, L. A. Yakovishin, N. N. Arnautov, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 377 (1996).
- 6. L. A. Yakovishin, V. I. Grishkovets, N. N. Arnautov, and V. Ya. Chirva, Khim. Prir. Soedin., 676 (1999).